Flight Stability Gyro / Accelerometer Filter

by nickatredbox | April 20, 2013 | (4) Posted in Tips

Kalman Filter for Arduino and C# Test Harness

Kalman filter test harness with mimic C# code converted from Arduino code originally writen by Kristian Lauszus, TKJ Electronics.
 
Here is the Arduino code for same Arduino Code

The filter inputs in the test harness are driven from the sliders but could easily be fed from a real sensor. Another day perhaps?

The whole project is here Kalman Test




The C# class 

/* Copyright (C) 2012 Kristian Lauszus, TKJ Electronics. All rights reserved.

 This software may be distributed and modified under the terms of the GNU

 General Public License version 2 (GPL2) as published by the Free Software
 Foundation and appearing in the file GPL2.TXT included in the packaging of
 this file. Please note that GPL2 Section 2[b] requires that all works based
 on this software must also be made publicly available under the terms of
 the GPL2 ("Copyleft").

 Contact information

 -------------------

 Kristian Lauszus, TKJ Electronics

 Web      :  http://www.tkjelectronics.com
 e-mail   :  kristianl@tkjelectronics.com
 */
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace KalmanTest

{
    public class Kalman
    {
         /* variables */
        double Q_angle; // Process noise variance for the accelerometer
        double Q_bias; // Process noise variance for the gyro bias
        double R_measure; // Measurement noise variance - this is actually the variance of the measurement noise
    
        double angle; // The angle calculated by the Kalman filter - part of the 2x1 state matrix
        double bias; // The gyro bias calculated by the Kalman filter - part of the 2x1 state matrix
        double rate; // Unbiased rate calculated from the rate and the calculated bias - you have to call getAngle to update the rate
    
        double[,] P =  new double[2,2]; // Error covariance matrix - This is a 2x2 matrix
        double[] K = new double[2]; // Kalman gain - This is a 2x1 matrix
        double y; // Angle difference - 1x1 matrix
        double S; // Estimate error - 1x1 matrix


        public Kalman() {


            /* We will set the varibles like so, these can also be tuned by the user */

            Reset();
        
            // Reset bias
            // Since we assume tha the bias is 0 and we know the starting angle (use setAngle), 
            //the error covariance matrix is set like so - see: http://en.wikipedia.org/wiki/Kalman_filter#Example_application.2C_technical
            SetDefaults();
        }

        // The angle should be in degrees and the rate should be in degrees per second and the delta time in seconds

        public double getAngle(double newAngle, double newRate, double dt) {
            // KasBot V2  -  Kalman filter module - http://www.x-firm.com/?page_id=145
            // Modified by Kristian Lauszus
            // See my blog post for more information: http://blog.tkjelectronics.dk/2012/09/a-practical-approach-to-kalman-filter-and-how-to-implement-it
                        
            // Discrete Kalman filter time update equations - Time Update ("Predict")
            // Update xhat - Project the state ahead
            /* Step 1 */
            rate = newRate - bias;
            angle += dt * rate;
        
            // Update estimation error covariance - Project the error covariance ahead
            /* Step 2 */
            P[0,0] += dt * (dt*P[1,1] - P[0,1] - P[1,0] + Q_angle);
            P[0,1] -= dt * P[1,1];
            P[1,0] -= dt * P[1,1];
            P[1,1] += Q_bias * dt;
        
            // Discrete Kalman filter measurement update equations - Measurement Update ("Correct")
            // Calculate Kalman gain - Compute the Kalman gain
            /* Step 4 */
            S = P[0,0] + R_measure;
            /* Step 5 */
            K[0] = P[0,0] / S;
            K[1] = P[1,0] / S;
        
            // Calculate angle and bias - Update estimate with measurement zk (newAngle)
            /* Step 3 */
            y = newAngle - angle;
            /* Step 6 */
            angle += K[0] * y;
            bias += K[1] * y;
        
            // Calculate estimation error covariance - Update the error covariance
            /* Step 7 */
            P[0,0] -= K[0] * P[0,0];
            P[0,1] -= K[0] * P[0,1];
            P[1,0] -= K[1] * P[0,0];
            P[1,1] -= K[1] * P[0,1];
        
            return angle;
        }

        public void setAngle(double newAngle) { angle = newAngle; } // Used to set angle, this should be set as the starting angle

        public double getRate() { return rate; } // Return the unbiased rate
    
        /* These are used to tune the Kalman filter */
        public void setQangle(double newQ_angle) { Q_angle = newQ_angle; }
        public double getQangle() { return Q_angle; }

        public void setQbias(double newQ_bias) { Q_bias = newQ_bias; }

        public double getQbias() { return Q_bias; }

        public void setRmeasure(double newR_measure) { R_measure = newR_measure; }

        public double getRmeasure() { return R_measure; }


        public void Reset()

        {            
            bias = 0; // Reset bias
            P[0, 0] = 0; // Since we assume tha the bias is 0 and we know the starting angle (use setAngle), the error covariance matrix is set like so - see: http://en.wikipedia.org/wiki/Kalman_filter#Example_application.2C_technical
            P[0, 1] = 0;
            P[1, 0] = 0;
            P[1, 1] = 0;
        }

        public void SetDefaults()

        {
            /* We will set the varibles like so, these can also be tuned by the user */
            Q_angle = 0.001;
            Q_bias = 0.003;
            R_measure = 0.03;
        }

    }//End of class

}


The whole C# project is here Kalman Test




Here is the Arduino code Arduino Code


/* Copyright (C) 2012 Kristian Lauszus, TKJ Electronics. All rights reserved.

This software may be distributed and modified under the terms of the GNU
General Public License version 2 (GPL2) as published by the Free Software
Foundation and appearing in the file GPL2.TXT included in the packaging of
this file. Please note that GPL2 Section 2[b] requires that all works based
on this software must also be made publicly available under the terms of
the GPL2 ("Copyleft").

Contact information
-------------------

Kristian Lauszus, TKJ Electronics
Web      :  http://www.tkjelectronics.com
e-mail   :  kristianl@tkjelectronics.com
*/

#ifndef _Kalman_h
#define _Kalman_h

class Kalman {
public:
   Kalman() {
       /* We will set the varibles like so, these can also be tuned by the user */
       Q_angle = 0.001;
       Q_bias = 0.003;
       R_measure = 0.03;
       
       bias = 0; // Reset bias
       P[0][0] = 0; // Since we assume tha the bias is 0 and we know the starting angle (use setAngle), the error covariance matrix is set like so - see: http://en.wikipedia.org/wiki/Kalman_filter#Example_application.2C_technical
       P[0][1] = 0;
       P[1][0] = 0;
       P[1][1] = 0;
   };
   // The angle should be in degrees and the rate should be in degrees per second and the delta time in seconds
   double getAngle(double newAngle, double newRate, double dt) {
       // KasBot V2  -  Kalman filter module - http://www.x-firm.com/?page_id=145
       // Modified by Kristian Lauszus
       // See my blog post for more information: http://blog.tkjelectronics.dk/2012/09/a-practical-approach-to-kalman-filter-and-how-to-implement-it
                       
       // Discrete Kalman filter time update equations - Time Update ("Predict")
       // Update xhat - Project the state ahead
       /* Step 1 */
       rate = newRate - bias;
       angle += dt * rate;
       
       // Update estimation error covariance - Project the error covariance ahead
       /* Step 2 */
       P[0][0] += dt * (dt*P[1][1] - P[0][1] - P[1][0] + Q_angle);
       P[0][1] -= dt * P[1][1];
       P[1][0] -= dt * P[1][1];
       P[1][1] += Q_bias * dt;
       
       // Discrete Kalman filter measurement update equations - Measurement Update ("Correct")
       // Calculate Kalman gain - Compute the Kalman gain
       /* Step 4 */
       S = P[0][0] + R_measure;
       /* Step 5 */
       K[0] = P[0][0] / S;
       K[1] = P[1][0] / S;
       
       // Calculate angle and bias - Update estimate with measurement zk (newAngle)
       /* Step 3 */
       y = newAngle - angle;
       /* Step 6 */
       angle += K[0] * y;
       bias += K[1] * y;
       
       // Calculate estimation error covariance - Update the error covariance
       /* Step 7 */
       P[0][0] -= K[0] * P[0][0];
       P[0][1] -= K[0] * P[0][1];
       P[1][0] -= K[1] * P[0][0];
       P[1][1] -= K[1] * P[0][1];
       
       return angle;
   };
   void setAngle(double newAngle) { angle = newAngle; }; // Used to set angle, this should be set as the starting angle
   double getRate() { return rate; }; // Return the unbiased rate
   
   /* These are used to tune the Kalman filter */
   void setQangle(double newQ_angle) { Q_angle = newQ_angle; };
   void setQbias(double newQ_bias) { Q_bias = newQ_bias; };
   void setRmeasure(double newR_measure) { R_measure = newR_measure; };
   
private:
   /* variables */
   double Q_angle; // Process noise variance for the accelerometer
   double Q_bias; // Process noise variance for the gyro bias
   double R_measure; // Measurement noise variance - this is actually the variance of the measurement noise
   
   double angle; // The angle calculated by the Kalman filter - part of the 2x1 state matrix
   double bias; // The gyro bias calculated by the Kalman filter - part of the 2x1 state matrix
   double rate; // Unbiased rate calculated from the rate and the calculated bias - you have to call getAngle to update the rate
   
   double P[2][2]; // Error covariance matrix - This is a 2x2 matrix
   double K[2]; // Kalman gain - This is a 2x1 matrix
   double y; // Angle difference - 1x1 matrix
   double S; // Estimate error - 1x1 matrix
};

#endif


Here is the Arduino code for same Arduino Code
 

COMMENTS

Supergoldfish on April 20, 2013
Great idea! I've built a sentry gun as a past project using the kalman filter with great success. Now you got me wondering about how well it work in this application.
Log In to reply
nickatredbox on April 21, 2013
I'm told its pretty well used by people on DIYdrones also there are plenty of demos on Youtube with IMU's
Log In to reply
sailorJohn on April 21, 2013
Wow!
Log In to reply
cwozny on April 21, 2013
I'm still trying to find a white paper on fusing a magnetometer into the gyroscope and accelerometer Kalman filter.
Log In to reply
nickatredbox on April 21, 2013
I have not seen one either

perhaps have 2 stages

stage 1 -= gyro / accel
stage 2 = stage 1 / compass


Log In to reply
nickatredbox on April 21, 2013
perhaps have 2 stages using the derivative of the first stage output

stage 1 -= gyro / accel
stage 2 = derivative of stage 1 / compass
Log In to reply

You need to log-in to comment on articles.


Flight Stability Gyro / Accelerometer Filter